Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7: 44328, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28281696

RESUMO

Several lines of evidence have revealed that newly emerging transformed cells are often eliminated from the epithelium, though the underlying molecular mechanisms of this cancer preventive phenomenon still remain elusive. In this study, using mammalian cell culture systems we have identified plectin, a versatile cytoskeletal linker protein, as a novel regulator for apical extrusion of RasV12-transformed cells. Plectin is accumulated in RasV12 cells when they are surrounded by normal epithelial cells. Similarly, cytoskeletal proteins tubulin, keratin, and Epithelial Protein Lost In Neoplasm (EPLIN) are also accumulated in the transformed cells surrounded by normal cells. Knockdown or functional disruption of one of these molecules diminishes the accumulation of the others, indicating that the accumulation process of the individual protein mutually depends on each other. Furthermore, plectin-knockdown attenuates caveolin-1 (Cav-1) enrichment and PKA activity in RasV12 cells and profoundly suppresses the apical extrusion. These results indicate that the plectin-microtubules-EPLIN complex positively regulates apical elimination of RasV12-transformed cells from the epithelium in a coordinated fashion. Further development of this study would open a new avenue for cancer preventive medicine.


Assuntos
Citoesqueleto de Actina/metabolismo , Caveolina 1/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Plectina/genética , Citoesqueleto de Actina/ultraestrutura , Animais , Caveolina 1/metabolismo , Comunicação Celular , Linhagem Celular Transformada , Movimento Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Cães , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Queratinas/genética , Queratinas/metabolismo , Células Madin Darby de Rim Canino , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Plasmídeos/química , Plasmídeos/metabolismo , Plectina/antagonistas & inibidores , Plectina/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transfecção/métodos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Dedos de Zinco/genética
2.
J Cell Sci ; 128(4): 781-9, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25609711

RESUMO

At the initial stage of carcinogenesis, a mutation occurs in a single cell within a normal epithelial layer. We have previously shown that RasV12-transformed cells are apically extruded from the epithelium when surrounded by normal cells. However, the molecular mechanisms underlying this phenomenon remain elusive. Here, we demonstrate that Cav-1-containing microdomains and EPLIN (also known as LIMA1) are accumulated in RasV12-transformed cells that are surrounded by normal cells. We also show that knockdown of Cav-1 or EPLIN suppresses apical extrusion of RasV12-transformed cells, suggesting their positive role in the elimination of transformed cells from epithelia. EPLIN functions upstream of Cav-1 and affects its enrichment in RasV12-transformed cells that are surrounded by normal cells. Furthermore, EPLIN regulates non-cell-autonomous activation of myosin-II and protein kinase A (PKA) in RasV12-transformed cells. In addition, EPLIN substantially affects the accumulation of filamin A, a vital player in epithelial defense against cancer (EDAC), in the neighboring normal cells, and vice versa. These results indicate that EPLIN is a crucial regulator of the interaction between normal and transformed epithelial cells.


Assuntos
Caveolina 1/genética , Transformação Celular Neoplásica/patologia , Células Epiteliais/patologia , Proteínas dos Microfilamentos/genética , Neoplasias/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Butadienos/farmacologia , Cavéolas/metabolismo , Caveolina 1/metabolismo , Linhagem Celular , Cromonas/farmacologia , Contactina 1/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Cães , Inibidores Enzimáticos/farmacologia , Células Epiteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Filaminas/metabolismo , Sistema de Sinalização das MAP Quinases , Células Madin Darby de Rim Canino , Proteínas dos Microfilamentos/metabolismo , Morfolinas/farmacologia , Miosina Tipo II/metabolismo , Nitrilas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Interferência de RNA , RNA Interferente Pequeno
3.
Nat Commun ; 5: 4428, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25079702

RESUMO

Recent studies have shown that certain types of transformed cells are extruded from an epithelial monolayer. However, it is not known whether and how neighbouring normal cells play an active role in this process. In this study, we demonstrate that filamin A and vimentin accumulate in normal cells specifically at the interface with Src- or RasV12-transformed cells. Knockdown of filamin A or vimentin in normal cells profoundly suppresses apical extrusion of the neighbouring transformed cells. In addition, we show in zebrafish embryos that filamin plays a positive role in the elimination of the transformed cells. Furthermore, the Rho/Rho kinase pathway regulates filamin accumulation and filamin acts upstream of vimentin in the apical extrusion. This is the first report demonstrating that normal epithelial cells recognize and actively eliminate neighbouring transformed cells and that filamin is a key mediator in the interaction between normal and transformed epithelial cells.


Assuntos
Filaminas/genética , Regulação da Expressão Gênica , Vimentina/genética , Peixe-Zebra/genética , Animais , Morte Celular , Linhagem Celular Transformada , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Cães , Embrião não Mamífero , Filaminas/antagonistas & inibidores , Filaminas/metabolismo , Células Madin Darby de Rim Canino , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Transformação Genética , Vimentina/antagonistas & inibidores , Vimentina/metabolismo , Peixe-Zebra/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
4.
J Cell Sci ; 127(Pt 16): 3425-33, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24963131

RESUMO

At the early stages of carcinogenesis, transformation occurs in single cells within tissues. In an epithelial monolayer, such mutated cells are recognized by their normal neighbors and are often apically extruded. The apical extrusion requires cytoskeletal reorganization and changes in cell shape, but the molecular switches involved in the regulation of these processes are poorly understood. Here, using stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative mass spectrometry, we have identified proteins that are modulated in transformed cells upon their interaction with normal cells. Phosphorylation of VASP at serine 239 is specifically upregulated in Ras(V12)-transformed cells when they are surrounded by normal cells. VASP phosphorylation is required for the cell shape changes and apical extrusion of Ras-transformed cells. Furthermore, PKA is activated in Ras-transformed cells that are surrounded by normal cells, leading to VASP phosphorylation. These results indicate that the PKA-VASP pathway is a crucial regulator of tumor cell extrusion from the epithelium, and they shed light on the events occurring at the early stage of carcinogenesis.


Assuntos
Moléculas de Adesão Celular/metabolismo , Transformação Celular Neoplásica , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Epitélio/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Moléculas de Adesão Celular/genética , Linhagem Celular Transformada , Proteínas Quinases Dependentes de AMP Cíclico/genética , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Epitélio/enzimologia , Humanos , Proteínas dos Microfilamentos/genética , Fosfoproteínas/genética , Fosforilação , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
5.
Glycobiology ; 22(4): 504-16, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22061998

RESUMO

Protein N-glycosylation begins with the assembly of a lipid-linked oligosaccharide (LLO) on the endoplasmic reticulum (ER) membrane. The first two steps of LLO biosynthesis are catalyzed by a functional multienzyme complex comprised of the Alg7 GlcNAc phosphotransferase and the heterodimeric Alg13/Alg14 UDP-GlcNAc transferase on the cytosolic face of the ER. In the Alg13/14 glycosyltransferase, Alg14 recruits cytosolic Alg13 to the ER membrane through interaction between their C-termini. Bioinformatic analysis revealed that eukaryotic Alg14 contains an evolved N-terminal region that is missing in bacterial orthologs. Here, we show that this N-terminal region of Saccharomyces cerevisiae Alg14 localize its green fluorescent protein fusion to the ER membrane. Deletion of this region causes defective growth at 38.5°C that can be partially complemented by overexpression of Alg7. Coimmunoprecipitation demonstrated that the N-terminal region of Alg14 is required for direct interaction with Alg7. Our data also show that Alg14 lacking the N-terminal region remains on the ER membrane through a nonperipheral association, suggesting the existence of another membrane-binding site. Mutational studies guided by the 3D structure of Alg14 identified a conserved α-helix involved in the second membrane association site that contributes to an integral interaction and protein stability. We propose a model in which the N- and C-termini of Alg14 coordinate recruitment of catalytic Alg7 and Alg13 to the ER membrane for initiating LLO biosynthesis.


Assuntos
Glicolipídeos/biossíntese , Complexos Multienzimáticos/metabolismo , N-Acetilglucosaminiltransferases/fisiologia , Oligossacarídeos/biossíntese , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Retículo Endoplasmático/enzimologia , Estabilidade Enzimática , Proteínas de Fluorescência Verde/biossíntese , Interações Hidrofóbicas e Hidrofílicas , Membranas Intracelulares/enzimologia , Modelos Moleculares , N-Acetilglucosaminiltransferases/química , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Fenótipo , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/biossíntese , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...